Normal Line Equation to the curves at the given point of tangency

y=(x2-1)2 at the point (-2, 9) 

Step 1: Get the Derivative by Applying the General Power Rule
ddx(cun)=cnun-1dudx
dydx=2x2-12-12x
dydx=4xx2-1


Step 2: Get the slope at point (-2, 9)
m=4(-2)-22-1
m=-8(3)
m=-24


Step 3: Apply the Equation of Normal Line at point (-2, 9)
y-y1=-1m(x-x1)
y-9=--124(x--2)
y-9=124(x+2)24
24y-216=x+2
24y-216-x-2=0
x-24y+218=0


Final Answer: x-24y+218=0




Share:

0 comments:

Post a Comment