Combination of Power of x Rule and Quotient Rule in Getting the DERIVATIVE

Find the Derivative of: y=x3-2x3+13

Step 1: Multiply both side by ddx
dydx=ddxx3-2x3+13


Step 2: Apply the power of x
ddx(cxn)=cnxn-1


dydx=3x3-2x3+12
dydx=(3)x3-22x3+12

Step 3: Apply the Quotient Rule
ddxuv=vddx(u)-uddx(v)v2


Given:
u=x3-2
dudx=3x2
v=x3+1
dvdx=3x2

Solution:
dydx=(3)3x2x3+1-3x2x3-2(x3+1)22


Final Answer: 27x2(x3-2)2(x3+1)4
Share:

0 comments:

Post a Comment