Quotient Rule Application in Solving for Derivative

Find the Derivative of: y=x45+5x4

Step 1: Multiply both side by ddx 
dydx=ddxx45+ddx5x4


Step 2: Apply the Qoutient Rule
ddxuv=vddx(u)-uddx(v)v2


Given:
u=x4                         u=5
dudx=4x3                   dudx=0
v=5                         v=x4   
dvdx=0                     dvdx=4x3


Solution:
dydx=(5)4x3-4x3(0)25+(x4 )0-5(4x3)x8 
dydx=20x325+-20x3x8 
dydx=4x35--20x5 


Final Answer: 4x35--20x5 
Share:

0 comments:

Post a Comment