Application of Product Rule in getting the Derivative

Find the Derivative of: y=x3-23x2+4

Step 1: Multiply both side by ddx
dydx=ddxx3-23x2+4


Step 2: Apply the Product Rule
ddx(uv)=udvdx+vdudx


Given: 
u = x3-2
dudx=3x2
v=3x2+4
dvdx=3x3x2+4


Solution:
dydx=x3-23x3x2+4+3x2+4(3x2)
dydx=3x4-6x3x2+4+3x23x2+4
Simplify:
dydx=12x4+12x2-6x3x2+4


Final Answer: 12x4+12x2-6x3x2+4
Share:

0 comments:

Post a Comment